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Broken space-time symmetries and mechanisms of rectification of ac fields
by nonlinear „non…adiabatic response
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We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The
presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn
cause nonzero averages of relevant observables. Nonlinear~non!adiabatic response is employed to explain the
effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry
breakings and the mechanisms of rectification of the current in such a system.
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I. INTRODUCTION

Much has been written on noise induced transport, wh
noise may be colored, or simply white with a time period
signal. Arguments include violation of fluctuation-dissipati
theorems, breaking of reflection symmetries of potentials
space, Maxwell’s demons, mixing of harmonics~of, e.g., a
periodic drive!, etc. All this applies to both classical an
quantum systems, and extends at least conceptually to
chastic resonance, quantum stochastic resonance, etc.
cent review on ratchet transport by Reimann@1# provides a
lot of theoretical and experimental results, and we refer
interested reader to this work.

For a set of related problems, such as directed part
current @2,3#, directed energy current@4#, average magneti
zation @5#, and nonlinear Hall effect@6#, to name a few, a
recently published symmetry approach was shown to syst
atically account for all relevant symmetries that have to
broken in order to explain the observed rectification effe
The purpose of this paper is to generalize this approach,
to apply it to different physically relevant situations such
underdamped, overdamped, or zero temperature cases
also use the nonlinear response arguments to make th
sults of symmetry considerations very transparent. We
argue for a rather minor role of additional fluctuations th
are mainly responsible for the area of phase space explo
Although we will discuss mostly the case of time-period
external fields, we will also show how the nonlinear respo
concept can be generalized to fields that are quasiperiod
time.

The paper has the following structure. In the followin
section we discuss the symmetry breaking by considering
adiabatic limit and making use of some general forms
nonlinear response functions. Section III is devoted to
detailed symmetry analysis of a classical particle moving i
periodic potential under the influence of an external ac dr
Symmetry breaking leads to a directed current here. We
discuss the presence of ballistic channels which provid
mechanism of current rectification. We will show that the
1063-651X/2002/66~4!/041104~10!/$20.00 66 0411
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ballistic channels survive in the presence of dissipation. S
tion IV addresses the case of a particle with nonparab
dispersion. The addition of a spatial potential allows us
tune the system in such a way that ballistic channels dis
pear. This will lead to an expected dramatic drop of the
rected current value. Conclusions and discussions are g
in Sec. V.

II. ADIABATIC RESPONSE TO SLOW ac FIELDS

Consider a certain system in contact with a heat bath.
system is characterized by some internal~nonlinear! dynam-
ics, and we will discuss concrete models below. So far
just need to know that its state can be characterized by
tain variables that are functions of time. These could be fu
tions of phase space variables of a classical system, or
pectation values of operators for a quantum system. Cons
one of such variables which we denote asA(t). The coupling
to the heat bath will be characterized by at least t
parameters—the temperature of the bath~we will use the
notation of inverse temperatureb) and some set of relax
ation times, in the simplest case just one relaxation time~we
will use the notation of the inverse relaxation timen). We
also assume that the chosen variableA(t) is zero on average

Let us now apply a static fieldE which couples toA such
that a nonzero averageÃ5^A(t)& t is generated. Its depen
dence onE is assumed to be given by some single valu
response functionÃ5 f (E) @7# ~the physical meaning of the
response function can be different, electric polarization
magnetization, for example!. The above mentioned symme
tries will be connected to corresponding symmetries of
function f (E). This function will be in general nonlinear, ye
in some cases it may be expanded in a Taylor series aro
E50 and start with a linear term~this term describes then
the linear response!. There are two possibilities: the functio
f (E) is either antisymmetricf (E)52 f (2E) or it is asym-
metric f (E)Þ2 f (2E).

Before analyzing the case of adiabatically slow perio
ac fields, we will more rigorously introduce the notion
©2002 The American Physical Society04-1
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possible symmetries of an arbitrary periodic function w
zero mean.

A. Classification of symmetries of a periodic function
with zero mean

Consider a periodic functiong(z12p)5g(z) having
zero mean. First, such functions may be symmetric aro
certainz values. Without loss of generality, this point may
set to zero and we findg(z)5g(2z). We will use the ab-
breviationgs in such a case. Second, such functions may
antisymmetricg(z)52g(2z) ~abbrevationga). Note that
the points around which a function is symmetric and an
symmetric will be different if the function possesses bo
symmetries. Finally, the function may possess shift symm
try ~which is also called antiperiodicity!: g(z1p)52g(z)
~abbreviationgsh). A zero mean periodic function may pos
sess none of the above symemtries, precisely one of them
all three simultaneously. In particular,gs functions may be
expanded in a pure cosine Fourier series,ga functions in a
pure sine Fourier series, andgsh functions show up with zero
even Fourier components in their Fourier series expans
As a consequence, the simplest functiong(z)5cos(z1z0)
possesses all three symmetries. The functiong(z)5cos(z)
1cos(2z1z0) does not possess any of the listed symmet
except forz050,p (gs), and z056p/2 (ga). A final ex-
ampleg(z)5cos(z)1cos(3z1z0) always possesses shift sym
metry (gsh) and in addition may be symmetricandantisym-
metric for z050,p.

Let us finally note that most cases under consideration
several harmonics contained in the drive. However, it may
also important to use pulse sequences. The symmetry co
erations can be straightforwardly applied also to such ca

B. Periodic ac fields

Let us now assume that the fieldE is slowly varying in
time. Slowly means that the characteristic time scales
changes ofE(t) are much larger than all other time scales
the system. Then we are dealing with the adiabatic limit
the response to time-dependent fields. We may use the
sponsef to a static field and simply insert the slow tim
dependence:f „E(t)…. Consider a time-periodic fieldE(t)
5E(t1T) with zero averageẼ50. In general, the corre
sponding valueÃ51/T* f „E(t)…dt will be nonzero for asym-
metric f. However, for antisymmetric single valuedf the av-
erageÃ will be zero provided the functionE(t) is either
antisymmetricE(t)52E(2t) or has shift symmetryE(t)
52E(t1T/2).

Consider as an example

E~ t !5E1cost1E2cos~2t1a!1E3sin~3t1a8!. ~1!

For E25E350 Eq. ~1! has all three mentioned symmetrie
of periodic functions. ForE350 the function has no symme
tries except fora5np (n integer! where it is symmetric, or
for a5p(1/21n) where the function is antisymmetric. Fo
E250 Eq. ~1! has shift symmetry except fora85p(1/2
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1n) when it is in addition symmetric and antisymmetr
~around different time origins, of course!.

Next we assume a case when the adiabatic response
tion f may be expanded in a Taylor series,

f ~E!5 f 1E1 f 2E21 f 3E31•••, ~2!

where the skipping of higher order terms is justified by t
smallness ofE. For f 2Þ0 the response is asymmetric an
consequently any field from Eq.~1! will in general lead to a
nonzero average off. For f 250, however, all shift symmet-
ric and antisymmetricE(t) will yield zero averagedf ~be-
cause it leads also to a shift symmetry or antisymmetryf
in time!. As an example of mixing of harmonics the leadin
nonzero contribution forE2Þ0, E350 equals

f̃ 5
1

TE0

T

f „E~ t !…dt5
3

4
f 3E1

2E2cosa1•••. ~3!

In accordance with the above said,f̃ vanishes for a
5p(1/21n). Note that the antisymmetry property off (E)
is linked to some internal symmetries of the dynamical s
tem under consideration, as will be shown below.

It is important to note that the above is valid for sing
valued response functions. If the coupling to a heat bath
too weak, response functions may contain hysteretic loo
Such cases need separate discussion@7#.

C. Quasiperiodic ac fields

We may even consider quasiperiodic driving here. S
pose that we drive the system with a fieldE(t)5e1(t)
1e2(t) where both componentse1,2 are time periodic, but
with incommensurable periods. The resulting fieldE(t)
would be then quasiperiodic. If considering low amplitu
fields and expanding the response function to second or t
order, the full dc average ofA(t) will be given by a mere
sum of the averages obtained in the presence of only on
the two periodic fields. Consider, e.g.,E(t)5e1cosv1t
1e2cosv2t and an asymmetric response. In lowest order
the field amplitudes we obtain

f̃ 5 f 2S 1

2
e1

21
1

2
e2

2D1 f 4S 3

8
e1

41
3

8
e2

41
6

4
e1

2e2
2D1••• .

~4!

In higher orders in the response interference effects app
so that products of the field components enter the result.
for the lowest order case (f 2) only the sum appears. So w
may assume that further changing the drive by adding m
time periodic field components does not change the m
result of a possibility of a nonzero average.

If we consider an antisymmetric response functionf, we
need to choose a more sophisticated quasiperiodic dr
Take, e.g., E(t)5e1(t)1e2(t) with ei(t)5ei1cosvit
1ei2cos(2vit1ai). Assuming again that the field amplitude
small, we obtain in lowest order

f̃ 5
3

4
f 3~e11

2 e12cosa11e21
2 e22cosa2!. ~5!
4-2
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Again we find that the periodic components of the quasip
odic drive contribute additively in lowest order. Note th
each contribution can be obtained by considering a redu
drive function consisting only of this part. The correspondi
contribution is clearly related to the symmetry properties
this reduced drive.

D. Do we need more?

Once a given problem is considered in the adiabatic li
like discussed above, the appearance of nonzero aver
due to ac fields can be obtained, and further changing
parameters away from the adiabatic limit will change nu
bers, but not the fact of nonzero averages. Ratchet trans
in its general form falls into such a class of systems. Ind
a particle moving in a periodic potentialV(x)5V(x1l) un-
der the influence of an external colored noise and dissipa
may be taken into the limit of zero temperature~no noise!,
slow periodic driving, and zero mass~overdamped case!,

ẋ1V8~x!1E~ t !50. ~6!

The response of̂ẋ& to a corresponding static fieldE is well
known and has been discussed in connection with Josep
current-voltage characteristics~for symmetric potentials!.
The response is clearly nonlinear, and antisymmetric if
potential is symmetric in space. In case of asymme
ratchet potentials the response is nonlinear but asymme
In the latter case a simpleE(t);cost signal with large
enough amplitude will generate a nonzero averaged curr
In case of symmetric potentials a drive which is neither
tisymmetric nor shift symmetric is needed.

Nonadiabatic corrections are of interest and importan
For example, upon constantly increasing the frequency
drive, currents~or other averages! may change sign, or in
crease or decrease by orders of magnitude@8–10#. Especially
interesting are cases when certain~nonadiabatic! parameter
limits give rise to new symmetries. These symmetries m
be traced back away from the corresponding limits and h
understand lots of peculiar features that are observed in
driven systems.

If the adiabatic response simply vanishes, nonadiab
response contributions will be not just mere corrections.
such cases the symmetry considerations of the underl
equations of motion presented below appear to be the m
direct way to predict rectification effects. One example
such a case is given in Ref.@5# where the problem of driven
quantum spins in ac magnetic fields is considered. While
adiabatic limit provides with zero induced magnetizati
component iny direction there, nonadiabatic response ter
make this component nonzero, as expected from symm
considerations.

III. DIRECTED CURRENTS: THE CASE OF A CLASSICAL
PARTICLE IN A PERIODIC POTENTIAL

In order to make further progress in the understanding
rectification it is useful to define a model. Here we will co
sider the case of a particle of the unit mass moving in
space-periodic potentialV(x)5V(x1l) under the influence
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of friction and external forces,

mẍ1g ẋ2 f ~x!2x~ t !50, ~7!

wheref (x)52V8(x) andx(t) is zero on average. The mas
m is assumed to be equal to one if not stated otherwise
x(t) is a Gaussian white noise, the particle undertakes di
sion with zero net current, in accord with the fluctuatio
dissipation theorem. If, however,x(t) contains correlations
~color!, then it is known that a nonzero net~dc! current is
possible. In order to understand this result, it is appropr
to make the correlations in the noise as transparent as
sible. The easiest way to do so is to choose

x~ t !5j~ t !1E~ t !, E~ t !5E~ t1T!, ~8!

wherej(t) is a Gaussian white noise and the time-perio
external fieldE(t) has zero mean. A probabilistic descriptio
of the system is then possible using a Fokker-Planck eq
tion ~see Appendix!.

In a next radical step we skip thej(t) term. The reason
for this is that we will be left with a deterministic equation
whose symmetries may be studied. These symmetries inv
ing operations in timet are assumed to hold even in th
presence of a Gaussian white noise, since such a term
not contain temporal correlations. Note that the general n
integrability of the resulting equations may provide with
regular~chaotic! trajectories. Thus we are left with an equ
tion of the form

mẍ1g ẋ2 f ~x!2E~ t !50. ~9!

A. The relevant symmetries and ways of violations

In order to characterize the symmetries of Eq.~9! we
remind that the phase space dimension is three. As we
for nonzero average currents which are characterized by
velocity ẋ, we have to check whether there exist symmetr
that allow to generate out of a specific trajectory of Eq.~9!
another one with reversed velocities. The transformation
interest have to involve a change of sign ofẋ leaving its
absolute value unchanged. Thus we look for transformati
that leave Eq.~9! invariant and~a! either change the sign o
x→2x and simultaneously shift timet→t1t0 or ~b! invert
time t→2t and shift coordinatex→x1x0.

The following symmetries can be identified@2,3#:

Ŝa , x→2x, t→t1
T

2
, if $ f a ,Esh%,

Ŝb , x→x, t→2t, if $Es ,g50%, ~10!

Ŝc , x→x1
l

2
, t→2t if $ f sh ,Ea ,m50%.

Note that Ŝb and Ŝc require g50 ~Hamiltonian case! and
m50 ~overdamped case!, respectively. Another observatio
is that all symmetries require certain symmetry properties
the external driveE(t), while the properties of the space
4-3
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periodic forcef not matter forŜb . A proper choice of the
drive may thus break all of the above listed symmetries w
any coordinate dependence of the forcef (x).

It is useful to provide an interpretation of the action of t
above symmetry operations on trajectories of Eq.~9!. If the
equation of motion is invariant under a symmetry, it impli
that a given solution or trajectory, when transformed us
the symmetry operation, yields again a solution or traject
of the system. It may be the same trajectory or a differ

one. The symmetryŜa for gÞ0 transforms an attractor int
an attractor, repellers, into repellers and basins of attrac
into basins of attraction. Thus if an attractor is mapped o
itself, the average velocity on that attractor is zero. If
attractor is mapped onto another attractor, we find comp
symmetry between the two attractors and their basins o
traction, while the average velocities will be of opposite sig

The symmetryŜb , which is valid for the Hamiltonian case
simply relates two trajectories to each other, both hav
opposite average velocities.

Once we add white noise, we have to consider some
of weighting different trajectories. In that sense, if two d
ferent trajectories are related by a symmetryŜa or Ŝb and
have identical statistical weight, their contributions to a to
average current will annihilate.

The symmetryŜc is acting in the overdamped limit, yet
is reverting the sign of time. Thus it maps an attractor o
repeller and the basin of attraction of an attractor into
basin of repulsion of a repeller. It follows that due to the lo
dimensiond52 of the phase space of this problem, the co
pactness of the phase space, and the uniqueness of a t
tory running through a point in it, all trajectories have ze
average velocity whenŜc is valid.

In order to correctly incorporate the effects of noise,
netic equations have to be considered. This is done in
pendix.

If at least one of the symmetries~10! is valid, we con-
clude that the averaged current is zero if an additional w
Gaussian noise term is added. This noise will simply lead
an exploration of the whole phase space and thus realiz
finite times different trajectories of the deterministic syste

Once all of the above symmetries are broken, we m
expect that in general the average current will be nonz
The understanding of the mechanisms that will lead to
current can be best obtained in the absence of noise fo
deterministic system.

B. Rectification mechanisms in the Hamiltonian limit

As it was shown in Ref.@3#, the value of the averag
current is strongly enhanced for the underdamped case, w
the dissipation rate tends to zero. Thus we start our stud
the mechanisms with the dissipationless caseg50. This
Hamiltonian limit of Eq.~7! is generically characterized b
nonintegrable dynamics with a mixed phase space contai
both chaotic and regular areas@11#. A stochastic layer ap-
pears around the separatrix of the integrable nondri
@E(t)50#, Eq. ~7!.
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Contributions to a nonzero current may come from traj
tories inside the stochastic layer as well as from regular
bound motion. Because the latter always exist for motion
both directions, strong effective cancellation of curren
takes place@2#, while the strongest remaining contributio
again comes from the stochastic layer, which will be cons
ered below.

In the following we choose the following functions an
parameters:

V~x!52cosx, ~11!

E~ t !5E1cosvt1E2cos~2vt1a!.

This choice ensures that the symmetriesŜa and Ŝb are bro-
ken. In Fig. 1 we show the Poincare map of the main s
chastic layer of our model.

Points with coordinatesp5 ẋ and x mod 2p are drawn
after each period of the drive. In Fig. 2 the time depende
of the coordinatex(t) is shown.

FIG. 1. Poincare´ map of the main stochastic layer of Eq.~9!
with g50 and functions~11! with E153.26,E251.2, a5p/2, and
v51. The two filled circles correspond to the two observed lim
cycle attractors in the weakly dissipative case with dampingg
51024.

FIG. 2. x(t) of trajectory from Fig. 1. Inset: enlargement o
x(t). Note the axis scales.
4-4
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We observe a drift in accordance with the symme

breaking @2#. The average velocity is approximatelŷẋ&
'0.85.

In order to understand the dynamical mechanisms o
nonzero dc current in the stochastic layer, we first note
the stochastic layer is bounded in phase space. The boun
contains of a fractal set of regular islands embedded in
stochastic layer. A trajectory from the stochastic layer m
become trapped for quite long times in these boundaries
perform ballisticlike~regularlike! dynamics. The symmetry
breaking of the equations of motion is reflected in a desy
metrization of these fractal boundary structures for the up
and lower boundaries. This in turn leads to a desymmetr
tion of distribution functions which characterize the pro
ability to stick and stay in such a boundary region@12#. In
Fig. 3~b! the probability distribution functions of the fligh
durations to the left and the right~for technical details see
Ref. @12#! are shown. These functions are characterized
algebaically decaying tails, and we clearly observe the ab
mentioned desymmetrization.

In the inset of Fig. 3~b! each point denotes the distan
covered in a given flight during the time of ballisticlike mo
tion. We observe a fine structure with three branches. T
major ones correspond to the main ballistic channels w
opposite velocities while a minor third one corresponds t
channel with smaller negative velocity.

C. Presence of dissipation

When dissipation is present in the system~i.e.,gÞ0), the
phase space of the system separates into basins of attra
of different low-dimensional attractors. Close to the Ham
tonian limit these attractors are limit cycles:x(t1T)5x(t)
12pm, ẋ(t1T)5 ẋ(t), mPZ. These limit cycles are locked
to the external periodic driveE(t), therefore their periodT is
characterized byT52np/v, nPZ. The average velocity on
the limit is given by

FIG. 3. Probability distributions of ballistic flights to the righ
~solid line! and left ~dashed line!. ~a! Case with dissipation and
noise.~b! Hamiltonian case. Inset: length of ballistic flight vs tim
of ballistic flight for Hamiltonian case.
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ẋdt5
m

n
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When further away from the Hamiltonian, limit chaotic a
tractors can appear via period-doubling bifurcations@13#.

A numerical test reveals that in the case ofg51024 only
two limit cycle attractors appear. Their location in the Po
carémap is shown in Fig. 1 by two filled circles. The depe
dence ofẋ(t) on both attractors is shown in Fig. 4.

Note that the attractors are located inside regular isla
of the corresponding nondissipative system. These isla
are characterized with nonzero winding numbers, and
sticking of the chaotic trajectory of the nondissipative ca
provides with the above discussed ballistic channels th
So we observe that the ballistic channels of the Hamilton
system survive by transforming into limit cycle attractors
the weakly dissipative case.

As the attractors are located inside the stochastic laye
the Hamiltonian limit, their basins of attraction are expect
to show up with a complex folding structure. This fact
manifested beautifully if we add a noise of weak intens
which corresponds to a small temperature 1/b50.05,

^j~ t !j~ t8!&52g/bd~ t2t8!. ~13!

1/b is small compared to the energy barrier of the perio
potential. As it turns out, in this case of strong external dr
ing the system is so far from the equilibrium case that d
ferent scales have to be used in order to compare with
noise intensity. In Fig. 5 we show the corresponding Po
carémap over a total time oft f5106. We observe that the
trajectory is sticking for long times to the two attractors. B
most importantly we observe frequent escapes from the
tractors basins. Once the trajectory is kicked out of suc
basin, it starts to quickly explore the stochastic layer spa
due to the weak damping, weak noise, and the above m
tioned complex folding of the basin boundaries. This resu
in the fact that the probability distribution of the velocities
far from being Maxwellian.

The dependence ofx(t) for the dissipative case with nois
is shown in Fig. 6. Although the dc current value h

FIG. 4. p(t)5 ẋ(t) of both attractors forg51024 which corre-
spond to the two filled circles in Fig. 1.
4-5
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changed compared to the Hamiltonian case, again the ev
tion is characterized by sticking to ballistic channels.

An evaluation of the corresponding ballistic flight tim
distributions is shown in Fig. 3~a!. A remarkable similarity to
the case of the distributions for the Hamiltonian case is
served. Also we observe that the power law tails of
Hamiltonian case are replaced by exponential ones in
dissipative case with noise, due to an expected noise-indu
cutoff in the maximum correlation time.

A consequence of the above results is that the loss
ballistic channels due to the variation of some parameter m
lead to a crossoverlike decrease of the current. In the foll
ing section we will design a model that does possess th
properties.

IV. DIRECTED CURRENTS: THE CASE
OF NONPARABOLIC DISPERSION

So far we have discussed the case of a classical par
with parabolic dispersion, i.e., a kinetic energy quadratic
the momentump. What happens if we consider nonparabo
dispersion? A prominent example would be a periodic dep

FIG. 5. Poincare´ map of the dissipative case with weak nois
The two filled circles correspond to the two observed limit cy
attractors forg51024.

FIG. 6. x(t) of trajectory from Fig. 5. Inset: enlargement o
x(t). Note the axis scales.
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dence onp as for (2cosp), which reminds the consideratio
of a quantum particle evolution in one band approximatio

A. Absence of additional potential

Let us first consider the case of a particle with a gene
dispersion relation in the presence of additional ac drivin

H5e~p!2xE~ t !, e~p!5e~2p!. ~14!

If the function e(p) is chosen to be periodic, its period
defined aslp . Let us first consider the symmetries of th
equations of motion which change the sign of the velocityẋ,

ẋ5e8~p!, ṗ5E~ t !. ~15!

The following symmetries can be identified:

x→2x, p→2p, t→t1
T

2
if $Esh%, ~16!

t→2t, p→2p if $Es%, ~17!

x→2x, p→p1
lp

2
if $esh8 %, ~18!

t→2t, p→p1
lp

2
if $esh8 ,Ea%. ~19!

Note that the last two operations~18!, ~19! may apply only
for periodic e(p) functions. Furthermore, these operatio
change the energy of the undriven system. If these operat
connect different trajectories, they should not matter at fin
temperatures since different energies contribute with diff
ent weights.

Choosing the free particle casee(p)5p2/2 we may arrive
at the conclusion that both relevant symmetries~16!, ~17!
can be violated by a proper choice ofE(t). Yet, as shown in
Refs.@2,14#, the expected dc current should be zero in suc
case, in fact independent of the strength of some addition
applied dissipation and noise. The case ofe(p)52cosp is
more involved. On one side it is well known that the kine
Boltzmann equation solution provides with a nonzero dc c
rent if both symmetries~16!, ~17! are broken@3#. On the
other side this dc current tends to zero as the dissipation
Hamiltonian case is approached. We will show in the follo
ing that the reason for that is an additional symmetry of
solutionsof Eq. ~15! due to the integrability of Eq.~14!.

Indeed, integration of Eq.~15! yields

p~ t !5g~ t;p0 ,t0!5p01EI~ t !2EI~ t0!, ~20!

whereĖI(t)5E(t). The functiong has the property

g~x;y,z!52g~z;2y,x!. ~21!

This symmetry operation relates points on a given traject
to points on aset of other trajectories. Such a symmet
cannot be derived from the equations of motion. It rather i
result of the integrability and reflects the symmetry of t
4-6
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solutions, i.e., of the phase space flow~in contrast symme-
tries of equations of motion relate two trajectories to ea
other!.

The symmetry~21! is in place independent of the choic
of the functionse(p) andE(t) and provides with the follow-
ing consequences. If we consider a corresponding kin
equation with finite dissipation, the loss of correlations i
plies an averaging over the initial phaset0 of the fieldE(t).
This averaging persists in the dissipationless limit, while
the other side we recover the above considered Hamilto
properties. The averaging overt0 leads to an enforcement o
the symmetry~21!, which in turn by changing the sign ofp

changes the sign ofẋ. Thus a vanishing dc current is ex
pected in that limit, in accordance with numerical and a
lytical analysis of kinetic equations. This result can also
obtained from Eqs.~20! and ~15! if an averaging with a
distribution function, which is symmetric inp0 and indepen-
dent ofx and t0, is performed,

E
0

T

dtE
0

T

dt0ẋUp0
1E

0

T

dtE
0

T

dt0ẋU
2p0

50. ~22!

To detect a dc current carried by the electrons in a sin
band one has to break the integrability of the semiclass
equations of motion. We consider this case in the next s
tion. An alternative way is a much more careful treatment
the quantum mechanical problem~see, for example, Ref
@15#!, which is, however, far beyond the scope of the pres
paper.

B. Presence of additional potential

Things change drastically if we add an external spa
periodic potential to Eq.~14!. Such a system is in genera
nonintegrable, and we may expect the additional symm
~21! to be absent. To be precise, we choose the follow
model here:

H52cosp2
1

2
cos~2p!2

j2

3
cosS x

j D2
j

3
xE~ t !. ~23!

The corresponding equations of motion read

ẋ5sinp1sin~2p!, ~24!

ṗ52
j

3
sinS x

j D1
j

3
E~ t !. ~25!

The free parameterj can be used to reach the limit of Eq
~9!. Indeed forj→0, ṗ→0. Choosing a small value ofupu
!1 will keep the momentum small. This allows for an e
pansion of the right hand side of Eq.~24! to first order.
Additional rescalingx→x/j and p→(3/j)p transforms the
problem exactly to Eq.~9! ~with g50). On the other side, a
choice of a finite value ofp may lead to trajectories that ar
not contained in Eq.~9!. In addition, Eq.~23! is periodic inp,
so the phase space is compact.

Let us discuss the relevant symmetries of Eqs.~24! and
~25!. Due to the presence of the cos(2p) term in Eq.~23! the
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shift symmetry of the kinetic energy is broken~in terms of
electrons this implies loss of the particle-hole symmetry!. We
can identify the following symmetry operations which lea
to a change of sign ofẋ:

x→2x, p→2p, t→t1
T

2
if $Esh%, ~26!

t→2t, p→2p if $Es%. ~27!

In the following we chooseE(t) from Eq. ~11! which en-
sures that both symmetries are broken.

For j!1 the phase space of Eq.~23! is characterized by
the presence of two disconnected stochastic layers. On
them corresponds to the layer in Fig. 1. In Fig. 7 we sh
the Poincare´ map of Eqs.~24! and ~25! for j50.35. Note
that the central layer is the one which continuously tra
forms into the layer in Fig. 1 whenj→0. An increasing ofj
will lead to a merging of the layers, which is followed b
losses~closings! of ballistic channels that are located ne
the boundaries of the central stochastic layer. The Poinc´
map forj51 is shown in Fig. 8.

Let us discuss a trajectory with initial conditionsp50
and x5jp, which ensures that we always start in the s
chastic layer which corresponds to Fig. 1 in the limit of sm

FIG. 7. Poincare´ map of Eqs.~24! and ~25! for j50.35.

FIG. 8. Poincare´ map of Eqs.~24! and ~25! for j51.
4-7
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j. The dependence of the scaled dc currentj s5^ ẋ&/j is
shown in Fig. 9 as a function ofj. Specifically its values for
the presented Poincare´ maps arej s'0.63 for j50.35 and
j s'0.002 for j51. We observe indeed that the curre
variations correspond to a closing or opening of ballis
channels.

The above results support the general expectation tha
the Hamiltonian limit a mixed phase space is needed, so
the current vanishes both in the case of an integrable sys
as well as in the case of a fully chaotic one.

V. CONCLUSIONS

We presented a symmetry approach to the effect of re
fication due to external ac fields applied to a lo
dimensional dynamical system with optional contact to
heat bath. The nonlinear~nonadiabatic! response is used t
explain the effect. We explained the mechanisms of suc
rectification for different cases. In the case of a particle m
ing in a space-periodic potential the explanation is given
terms of desymmetrization of ballistic channels which cor
spond to motion in different directions. While this explan
tion starts from the case of a nondissipative Hamilton
limit, we showed that the ballistic channels are robust w
respect to adding dissipation and fluctuations. The mec
nism of the directed current in the presence of dissipatio
hidden in the desymmetrization of the basins of attraction
previously symmetry-related limit cycles with oppositely d
rected velocities.

A recent geometric approach by Schanzet al. in Ref. @16#
provides an elegant way to account for the average drift
locity in the Hamiltonian case. The basic ingredient of th
approach is the assumption of an invariant density distri
tion in a stochastic layer being constant inside the layer.
resulting sum rule, when evaluated for concrete cases,

FIG. 9. j s as a function ofj. Note that the error in determining
the current value is of the order of 10%. A fine structure of p
nounced peaks is connected with the opening of new ballistic ch
nels due to the overlap of the stochastic layer with high-order re
nances.
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vides average velocities that quantitatively agree with
observations. A consequence of the sum rule is that a n
zero directed current may appear only in systems with
mixed phase space. This result correlates with our discus
of the mechanisms of directed currents in terms of ballis
channels, which may appear only if the stochastic layer
some bounds with regular phase space regions, and the
listic channels occur precisely in the neighborhood of th
bounds. Open questions are the following~i! Is there purely
diffusive ~chaotic! directed motion besides transport throu
ballistic channels?~ii ! When can one of these two mech
nisms prevail?

It was shown that the symmetry properties of the Fokk
Planck equation match the symmetries of the correspond
deterministic equations of motion in the absence of no
Similar results hold for a Boltzmann equation@3#.

Our symmetry considerations may be as well used to
plain rectifications in such diverse situations as~i! the di-
rected motion of particles in non-Newtonian liquids@17#, ~ii !
the appearance of ring currents for particles moving in
two-dimensional space-periodic potential@18,19#, ~iii ! the
appearance of directed heat flux currents in systems of in
acting particles@4#, ~iv! the appearance of a nonzero dc p
larization,~v! quantum ratchets@10#, to name a few. Symme
try analysis is also instructive in the case of less conventio
models, like systems with built-in asymmetry@20–22#,
where the asymmetry is hidden in a many body syste
internal interactions.
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APPENDIX:

The Fokker-Planck equation for the probability distrib
tion W(x,p,t) with p[ ẋ of Eqs.~7!,~8! reads@1#

]W

]t
52p

]W

]x
1

1

m

]

]p F2 f ~x!2E~ t !1gp1
g

mb

]

]pGW.

~A1!

This equation is linear inW, preserves the norm*Wdx dp,
and is dissipative. For a fixed norm any initial condition w
converge to a single attractor solutionWs . For the case
E(t)50 it is easy to see that the attractor is the Gibbs d
tribution. For nonzeroE(t) the attractor solutionWs will be
periodic inx and t. The average current is given by

^p&5E pWsdx dp dt. ~A2!

It follows that Eq. ~A1! is invariant under the following
transformations:

Ŝa , x→2x, p→2p, t→t1
T

2
if $ f a , Esh%,

-
n-
o-
4-8
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Ŝb , x→x, t→2t, p→2p if $Es , g50%. ~A3!

At the same time Eq.~A2! is changing sign. Since the solu
tion Ws is unique, the conclusion is that^p&50.

The overdamped limitm50 is described by the following
Fokker-Planck equation@1#:

g
]W

]t
5

]

]x
@2 f ~x!2E~ t !#W1

1

b

]2W

]x2
. ~A4!

The average current is given by

^p&5E f ~x!Wsdx dt. ~A5!

The symmetryŜa again holds. However, the symmetry

Ŝc , x→x1
l

2
, t→2t if $ f sh , Ea ,m50%

does not follow from Eq.~A4! in a similar way. It is inter-
esting to note that Reimann@23# considered the symmetrie
of the original stochastic differential equations~7!,~8! and
argued thatŜc holds for nonzero noise intensities. Fistul@24#

showed thatŜc connects the original Fokker-Planck equati
~A4! with its conjugated counterpart.

Here we will use a related approach and prove the v
ishing of Eq.~A5! when Ŝc holds. First we remind that the
distributionWs is periodic inx and t. Next we note that the
operators]/]t and ]/]x are anti-Hermitian on the space o
x,t-periodic functions. Let us define the operatorT as

T5

2
]

]x

g
]

]t
2

]2

b]x2
1E~ t !

]

]x

. ~A6!

Then Eq.~A4! can be rewritten as a Lippmann-Schwing
type integral equation,

W511T f~x!W. ~A7!

Provided the conditions forŜc hold, i.e., E(t)[Ea(t), the
operatorT has the property

T†52T~2t !, T~x1x0!5T~x!. ~A8!
et

i-

l,

04110
-

Expanding Eq.~A7! in a formal series inf (x) we obtain

Ws511 (
n51

`

@T f~x!#n. ~A9!

With Eq. ~A5! we obtain for the average current

^p&5 (
n51

` E f ~x!@T f~x!#ndx dt. ~A10!

Since all terms in Eq.~A10! are real valued, we conclud
that all integrals with evenn vanish because off (x)
[ f sh(x) and these terms contain odd powers off. All inte-
grals with oddn vanish because of Eq.~A8!, since they con-
tain odd powers ofT. Thus we find that indeed the averag
current exactly vanishes whenŜc holds.

We also performed a numerical solution of Eq.~A4! for
T5g51 and f (x)5sinx, E(t)5sin(vt)1sin(2vt1a) with
v50.8. The functionW was expanded in a Fourier series
x and twenty Fourier harmonics have been taken into
count. The resulting coupled ordinary differential equatio
were simply integrated until the system reached the fi
attractorWs .

For the above choice of functionsf (x) andE(t) the sym-
metry Ŝa is violated becauseE(t) is not shift symmetric. At
the same time the symmetryŜc is violated for all values ofa
except fora50,6p,62p, . . . . In Fig. 10 the dependenc
of the average current^p& ~A5! on a is shown. We observe
that for a50,p,2p the symmetryŜc is restored and the
current is vanishing~the absolute numerical value is less th
10212).

FIG. 10. ^p& as a function ofa ~see text!.
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